C. U. SHAH UNIVERSITY Winter Examination-2022

Subject Name : Complex Analysis

Subject Code : 5SC	01COA1	Branch: M.Sc. (Mathematics)		
Semester: 1	Date: 04/01/2023	Time: 11:00 To 02:00	Marks: 70	

Instructions:

Q-1

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I Attempt the Following questions

(07)

		a.	Solve $sinz = 2$.	02
			Prove that $\cos h^2 x - \sin h^2 x = 1$.	02
			Define entire function and give example of it.	02
			Write C-R equation in polar form.	01
Q-2			Attempt all questions	(14)
	Α		State and prove Cauchy Riemann equation.	07
	B		Find the product of all roots of $z^5 = 1 + i$.	04
	С		Find the value of $tan^{-1}(2i)$.	03
			OR	
Q-2			Attempt all questions	(14)
	Α		Find the value of $(1 + \sqrt{3}i)^{90} + (1 - \sqrt{3}i)^{90}$.	05
	B		Find real and imaginary part of $\left[\frac{e}{2}\left(-1-\sqrt{3}i\right)\right]^{3\pi i}$.	05
	С		Prove that $sinh^{-1}z = log(z + \sqrt{z^2 + 1})$.	04
Q-3			Attempt all questions	(14)
•	Α		State and prove sufficient condition for a function to be analytic.	05
	B		Find harmonic conjugate of $\frac{y}{x^2+y^2}$.	05
	С		Show that $f(z) = xy + iy$ is nowhere analytic. OR	04
Q-3			Attempt all questions	
Q-3	Α		State and prove C-R equation for analytic function	06
	B		Show that if $f(z)$ and $\overline{f(z)}$ analytic in a given domain, then $f(z)$ must be	00
	D		show that if $f(z)$ and $f(z)$ and $f(z)$ analytic if a given domain, then $f(z)$ must be constant throughout D .	νŦ
	С			04
	U		Show that $f(z) = \frac{1}{z^4} (z \neq 0)$ is differentiable in its domain.	U-

SECTION – II				
Q-4		Attempt the Following questions	(07)	
		a. Find residue of $\frac{1}{z+z^2}$.	02	
		b. Find the fixed points of transformation $w = \frac{6z-9}{z}$.	02	
		c. Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{z^n (n!)^2}{2n!}$	02	
Q-5	A B	d. State Liouville's Theorem. Attempt all questions State and prove Fundamental Theorem of Algebra. Show that if <i>C</i> is the boundary of the triangle with vertices at the points 0, 3 <i>i</i> and -4, oriented in the counterclockwise direction, then $\int_C (e^z - e^z) dx$	01 (14) 05 05	
	С	$ \bar{z}\rangle dz \le 60.$ Integrate the function $f(z) = \frac{1}{z^4 + 4z^2}$ around the curve $C: z - 2i = 3$ traversed in counter-clockwise direction.	04	
Q-5	A	OR Attempt all questions State and prove Cauchy's integral formula.	05	
	B C	Find $\int_C f(z)dz$, where $f(z) = \pi exp(\pi \overline{z})$ and <i>C</i> is the boundary off the square with vertices at the points 0, 1, 1 + <i>i</i> and <i>i</i> , the orientation of <i>C</i> being in the counterclockwise direction State and prove M-L inequality.	05 04	
Q-6	A B	Attempt all questions State and prove Laurent's series. Find the Laurent expansions for the function $f(z) = \frac{z}{(z-2)(z+i)}$ in the	(14) 07 04	
	C	regions $ z > 2$. Find the bilinear transformation that maps the points 2, <i>i</i> , -2 in z-plane onto 1, <i>i</i> , -1 in the w-plane.	03	
Q-6		OR Attempt all Questions		
Q-0	Α	State and prove Taylor's series.	07	
	B	Find the Taylor series for the function $f(z) = \frac{1}{z}$ about the point $z_0 = 2$.		
	С	Evaluate $\int_{C} tanzdz C: z = 2$ by using Cauchy's residue theorem.	03	

Evaluate $\int_C tanzdz C: |z| = 2$ by using Cauchy's residue theorem. С

